Exponent Properties

1. Product of like bases:

$$
a^{m} a^{n}=a^{m+n}
$$

To multiply powers with the same base, add the exponents and keep the common base.

$$
\text { Example: } x^{5} x^{3}=x^{5+3}=x^{8}
$$

2. Quotient of like bases: $\quad \frac{a^{m}}{a^{n}}=a^{m-n}$

To divide powers with the same base, subtract the exponents and keep the common base.

$$
\text { Example: } \frac{x^{5}}{x^{3}}=x^{5-3}=x^{2}
$$

3. Power to a power:
 $$
\left(a^{m}\right)^{n}=a^{m n}
$$

To raise a power to a power, keep the base and multiply the exponents.

$$
\text { Example: }\left(x^{5}\right)^{3}=x^{5^{* 3}}=x^{15}
$$

4. Product to a power:

$$
(a b)^{m}=a^{m} b^{m}
$$

To raise a product to a power, raise each factor to the power.

$$
\text { Example: }\left(x^{4} y^{5}\right)^{3}=x^{12} y^{15}
$$

5. Quotient to a power

$$
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}
$$

To raise a quotient to a power, raise the numerator and the denominator to the power.
Example: $\left(\frac{x^{3}}{y^{2}}\right)^{4}=\frac{x^{12}}{y^{8}}$

6. Zero Exponent:
 $$
a^{0}=1
$$

Any number raised to the zero power is equal to " 1 ".
Example: $\left(8 x^{4}\right)^{0}=1$

7. Negative exponent:
 $$
a^{-n}=\frac{1}{a^{n}} \quad \text { or } \quad \frac{1}{a^{-n}}=a^{n}
$$

Negative exponents indicate reciprocation, with the exponent of the reciprocal becoming positive. You may want to think of it this way: unhappy (negative) exponents will become happy (positive) by having the base/exponent pair "switch floors"!

$$
\text { Example: } 8^{-2}=\frac{1}{8^{2}}=\frac{1}{64}
$$

or

$$
\frac{4}{x^{-3}}=4 x^{3}
$$

